Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Advertisement
Epidemiology and Population Health
International Journal of Obesity volume 48, pages 44–54 (2024)
313
1
65
Metrics details
Obesity poses a significant public health challenge. Research has examined the impact of cannabis and subproducts on health but varying results have hindered a consensus.
This study aimed to evaluated the effects of cannabis and subproducts on body measurements.
For searching randomized controlled trials evaluating cannabis and/or subproducts use and changes in anthropometric measures, a systematic search at MEDLINE, Embase, Cochrane Library and Web of Science was conducted until March 2023. The outcomes included changes in body weight, body mass index (BMI) and waist circumference (WC). Meta-analysis was realized using R software (version 4.2.1).
In general, cannabis use reduced weight by 1.87 kg (95% CI: −3.71 to −0.03) and WC (mean difference = −2.19, 95% CI: −4.44 to 0.06). When examining subgroups, longer follow-up periods were associated with a more pronounced BMI reduction (mean difference = −1.10, 95% CI: −2.23 to 0.03). Cannabinoid CB1 exhibited an increase in body fat (mean difference = 1.70, 95% CI: 0.66–2.74).
These findings suggest that cannabis and subproducts could be considered adjuncts in obesity treatment by helping to reduce relevant anthropometric measurements.
This is a preview of subscription content, access via your institution
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
Prices may be subject to local taxes which are calculated during checkout
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
Safaei M, Sundararajan EA, Driss M, Boulila W, Shapi’i A. A systematic literature review on obesity: understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. computers in biology and medicine. 2021;136. https://www.sciencedirect.com/science/article/pii/S0010482521005485.
PAHO. World Obesity Day 2022: accelerating action to end obesity – PAHO/WHO | Pan American Health Organization. Pan American Health Organization; 2022 https://www.paho.org/pt/noticias/4-3-2022-dia-mundial-da-obesidade-2022-acelerar-acao-para-acabar-com-obesidade#:~:text=4%20de%20mar%C3%A7o%20de%202022.
ABESO. Obesity map. Obesity and metabolic syndrome. Brazilian Association for the Study of Obesity and Metabolic Syndrome; 2023. https://abeso.org.br/obesidade-e-sindrome-metabolica/mapa-da-obesidade/.
Haslam DW, James WPT. Obesity. Lancet. 2005;366:1197–209.
Article PubMed Google Scholar
Gonzalo-Encabo P, Maldonado G, Valadés D, Ferragut C, Pérez-López A. The role of exercise training on low-grade systemic inflammation in adults with overweight and obesity: a systematic review. Int J Environ Res Public Health. 2021;18:13258.
Article CAS PubMed PubMed Central Google Scholar
Jakicic JM, Davis KK. Obesity and physical activity. Psychiatr Clin N Am. 2011;34:829–40. https://www.sciencedirect.com/science/article/abs/pii/S0193953X11000864?via%3Dihub.
Article Google Scholar
Aaseth J, Ellefsen S, Alehagen U, Sundfør TM, Alexander J. Diets and drugs for weight loss and health in obesity (an update). Biomed Pharmacother. 2021;140:111789.
Article CAS PubMed Google Scholar
Smith BR, Schauer P, Nguyen NT. Surgical approaches to the treatment of obesity: bariatric surgery. Endocrinol Metab Clin N Am. 2008;37:943–64.
Article Google Scholar
Bridgeman MB, Abazia DT. Medicinal cannabis: history, pharmacology, and implications for the acute care setting. Pharm Ther. 2017;3:180–8.
Google Scholar
Lian J, Casari I, Falasca M. Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacol Res. 2022;175:106025 https://www.sciencedirect.com/science/article/pii/S1043661821006095.
Article CAS PubMed Google Scholar
de Souza TM. Vias metabólicas, Potencial Prático E Antagonismo Do Sistema canabinóide: Uma Revisão bibliográfica. [Monografia (Especialização) – Curso De Medicina]. Universidade Federal da Bahia (UFBA); 2012. p. 1–51.
Bluher M, Engeli S, Kloting N, Berndt J, Fasshauer M, Batkai S, et al. Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity. Diabetes. 2006;55:3053–60. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228260/.
Article PubMed Google Scholar
Engeli S, Böhnke J, Feldpausch M, Gorzelniak K, Janke J, Bátkai S, et al. Activation of the peripheral endocannabinoid system in human obesity. Diabetes. 2005;54:2838–43. https://www.ncbi.nlm.nih.gov/pubmed/16186383.
Article CAS PubMed Google Scholar
You T, Disanzo BL, Wang X, Yang R, Gong D. Adipose tissue endocannabinoid system gene expression: depot differences and effects of diet and exercise. Lipids Health Dis. 2011;10:194.
Article CAS PubMed PubMed Central Google Scholar
Cortes-Justo E, Garfias-Ramirez SH, Flores A. The function of the endocannabinoid system in the pancreatic islet and its implications on metabolic syndrome and diabetes. Islets. 2023;15:1–11.
Article PubMed PubMed Central Google Scholar
Barré T, Bourlière M, Ramier C, Carrat F, Di Beo V, Protopopescu C, et al. Cannabis use is inversely associated with metabolic disorders in hepatitis c-infected patients (ANRS CO22 Hepather Cohort). J Clin Med. 2022;11:6135. https://www.mdpi.com/2077-0383/11/20/6135.
Article PubMed PubMed Central Google Scholar
Abuhasira R, Azar S, Nemirovski A, Tam J, Novack V. Herbal cannabis use is not associated with changes in levels of endocannabinoids and metabolic profile alterations among older adults. Life. 2022;12:1539.
Article CAS PubMed PubMed Central Google Scholar
Kowalczuk A, Marycz K, Kornicka J, Groborz S, Meissner JM, Mularczyk M. Tetrahydrocannabivarin (THCV) protects adipose-derived mesenchymal stem cells (ASC) against endoplasmic reticulum stress development and reduces inflammation during adipogenesis. Int J Mol Sci. 2023;24:7120–0.
Article CAS PubMed PubMed Central Google Scholar
Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, et al. Cochrane handbook for systematic reviews of interventions. Vol 6.4. Cochrane; 2023. www.training.cochrane.org/handbook.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Br Med J. 2021;372:n71.
Article Google Scholar
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. systematic reviews. 2016;5. https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-016-0384-4.
Barker TH, Stone JC, Sears K, Klugar M, Tufanaru C, Leonardi-Bee J, et al. The revised JBI critical appraisal tool for the assessment of risk of bias for randomized controlled trials. JBI Evid Synth 2023;21:494–506.
Article PubMed Google Scholar
Khan Academy. Diferencias De Medias muestrales: Ejemplos De Probabilidad (artículo). Khan Academy; 2023. https://es.khanacademy.org/math/ap-statistics/sampling-distribution-ap/xfb5d8e68:sampling-distribution-diff-means/a/diff-sample-means-probability-examples.
Borenstein M. Introduction to meta-analysis. Wiley, Chicester; 2009. https://www.wiley.com/en-us/Introduction+to+Meta+Analysis-p-9780470057247.
Cochrane. How to do a cochrane systematic review. 2020. https://brazil.cochrane.org/como-fazer-uma-revis%C3%A3o-sistem%C3%A1tica-cochrane.
Deeks J, Higgins J, Altman D. Chapter 10: analysing data and undertaking meta-analyses. 2019. https://training.cochrane.org/handbook/current/chapter-10.
Lopez HL, Cesareo KR, Raub B, Kedia AW, Sandrock JE, Kerksick CM, et al. Effects of hemp extract on markers of wellness, stress resilience, recovery and clinical biomarkers of safety in overweight, but otherwise healthy subjects. J Diet Suppl. 2020;17:561–86. https://pubmed.ncbi.nlm.nih.gov/32456572/.
Article CAS PubMed Google Scholar
O’Leary DH, Reuwer AQ, Nissen SE, Despres JP, Deanfield JE, Brown MW, et al. Effect of rimonabant on carotid intima-media thickness (CIMT) progression in patients with abdominal obesity and metabolic syndrome: the AUDITOR trial. Heart. 2011;97:1143–50.
Article PubMed Google Scholar
Bergholm R, Sevastianova K, Santos A, Kotronen A, Urjansson M, Hakkarainen A, et al. CB(1) blockade-induced weight loss over 48 weeks decreases liver fat in proportion to weight loss in humans. Int J Obes. 2013;37:699–703.
Article CAS Google Scholar
Hollander PA, Amod A, Litwak LE, Chaudhari U. Effect of rimonabant on glycemic control in insulin-treated type 2 diabetes: the ARPEGGIO trial. Diabetes Care. 2010;33:605–7.
Article CAS PubMed Google Scholar
Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rössner S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet. 2005;365:1389–97.
Article PubMed Google Scholar
Scheen AJ, Finer N, Hollander P, Jensen MD, Van, Gaal LF. Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet. 2006;368:1660–72.
Article CAS PubMed Google Scholar
Pataky Z, Gasteyger C, Ziegler O, Rissanen A, Hanotin C, Golay A. Efficacy of rimonabant in obese patients with binge eating disorder. Exp Clin Endocrinol Diabetes. 2012;121:20–6.
Article PubMed Google Scholar
Backhouse K, Šarac I, Shojaee‐Moradie F, Stolinski M, Robertson MD, Frost G, et al. Fatty acid flux and oxidation are increased by rimonabant in obese women. Metabolism. 2012;61:1220–3.
Article CAS PubMed Google Scholar
Van Gaal LF, Scheen AJ, Rissanen AM, Rössner S, Hanotin C, Ziegler O. Long-term effect of CB1 blockade with rimonabant on cardiometabolic risk factors: two year results from the RIO-Europe study. Eur Heart J. 2008;29:1761–71.
Article PubMed Google Scholar
Alizadeh S, Djafarian K, Mofidi Nejad M, Yekaninejad MS, Javanbakht MH. The effect of β-caryophyllene on food addiction and its related behaviors: a randomized, double-blind, placebo-controlled trial. Appetite. 2022;178:106160.
Article PubMed Google Scholar
Jadoon KA, Ratcliffe SH, Barrett DA, Thomas EL, Stott C, Bell JD, et al. Efficacy and safety of cannabidiol and tetrahydrocannabivarin on glycemic and lipid parameters in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel group pilot study. Diabetes Care. 2016;39:1777–86. https://care.diabetesjournals.org/content/39/10/1777.
Article CAS PubMed Google Scholar
Carley DW, Prasad B, Reid KJ, Malkani R, Attarian H, Abbott SM, et al. Pharmacotherapy of apnea by cannabimimetic enhancement, the PACE clinical trial: effects of dronabinol in obstructive sleep apnea. Sleep. 2018;41:zsx184.
Article PubMed Google Scholar
Cavalheiro EKFF, Costa AB, Salla DH, da Silva MR, Mendes TF, da Silva LE, et al. Cannabis Sativa as a treatment for obesity: from anti-inflammatory indirect support to a promising metabolic re-establishment target. Cannabis Cannabinoid Res. 2021;7:135–51.
Article PubMed Google Scholar
Miralpeix C, Reguera AC, Fosch A, Zagmutt S, Casals N, Cota D, et al. Hypothalamic endocannabinoids in obesity: an old story with new challenges. Cell Mol Life Sci. 2021;78:7469–90. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557709/.
Article CAS PubMed PubMed Central Google Scholar
Xie S, Furjanic MA, Ferrara JJ, McAndrew NR, Ardino EL, Ngondara A, et al. The endocannabinoid system and rimonabant: a new drug with a novel mechanism of action involving cannabinoid CB1receptor antagonism? or inverse agonism ? as potential obesity treatment and other therapeutic use. J Clin Pharm Ther. 2007;32:209–31.
Article CAS PubMed Google Scholar
Kirkham T, Tucci S. Endocannabinoids in appetite control and the treatment of obesity. CNS Neurol Disord Drug Targets. 2006;5:275–92.
Article CAS Google Scholar
Nuesch E, Trelle S, Reichenbach S, Rutjes AWS, Tschannen B, Altman DG, et al. Small study effects in meta-analyses of osteoarthritis trials: meta-epidemiological study. BMJ. 2010;341:c3515–5.
Article PubMed PubMed Central Google Scholar
Batinic A, Sutlović D, Kuret S, Burčul F, Kalajžić N, Matana A, et al. Differences in plasma cannabidiol concentrations in women and men: a randomized, placebo-controlled, crossover study. Int J Mol Sci. 2023;24:10273–3.
Article CAS PubMed PubMed Central Google Scholar
Hammond S, Erridge S, Mangal N, Pacchetti B, Sodergren MH. The effect of cannabis-based medicine in the treatment of cachexia: a systematic review and meta-analysis. Cannabis Cannabinoid Res. 2021;6:474–87.
Article CAS PubMed PubMed Central Google Scholar
Hill KP, Gold MS, Nemeroff CB, McDonald W, Grzenda A, Widge AS, et al. Risks and benefits of cannabis and cannabinoids in psychiatry. Am J Psychiatry. 2022;179:98–109.
Article PubMed Google Scholar
van Enst WA, Naaktgeboren CA, Ochodo EA, de Groot JA, Leeflang MM, Reitsma JB, et al. Small-study effects and time trends in diagnostic test accuracy meta-analyses: a meta-epidemiological study. Syst Rev. 2015;4:66.
Article PubMed PubMed Central Google Scholar
Scheen AJ, Paquot N. Use of cannabinoid CB1 receptor antagonists for the treatment of metabolic disorders. Best Pract Res Clin Endocrinol Metab. 2009;23:103–16.
Article CAS PubMed Google Scholar
Dechartres A, Trinquart L, Boutron I, Ravaud P. Influence of trial sample size on treatment effect estimates: meta-epidemiological study. BMJ. 2013;346:f2304–4.
Article PubMed PubMed Central Google Scholar
Download references
This study used data that was made available on public websites and electronic data banks. The Brazilian government gained access to the Embase platform (via the CAPES website).
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – code 001.
Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil
Marcela Gomes Reis, Diego Ribeiro Taimeirão & Nathalia Sernizon Guimarães
Observatório de Pesquisa em Epidemiologia, Nutrição e Saúde (OPeNS), Belo Horizonte, Brazil
Marcela Gomes Reis, Andrea J. F. Ferreira, Diego Ribeiro Taimeirão, Renata Adrielle Lima Vieira & Nathalia Sernizon Guimarães
The Ubuntu Center on Racism, Global Movements, and Population Health Equity, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
Andrea J. F. Ferreira
Shahid Beheshti University of Medical Science, Tehran, Iran
Mohammad Hassan Sohouli
Universidade Federal de Ouro Preto, Ouro Preto, Brazil
Renata Adrielle Lima Vieira
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
AJFF and NSG developed the study’s concept and projected it. Direct access to DRT, MGR, AJFF, and NSG; data verification and analysis. MGR and NSG wrote the first paragraph of the manuscript. All of the authors contributed to the interpretation of the data, reviewed and edited the manuscript. NSG oversaw the research process. All of the authors had complete access to all of the study’s data and were ultimately responsible for the decision to submit them for publication.
Correspondence to Nathalia Sernizon Guimarães.
The authors declare no competing interests.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Search(10th March 2023)
“Cannabidiol” (Cannabidiol – MeSH – NCBI (nih.gov)); “Cannabis” (Cannabis – MeSH – NCBI (nih.gov)); Composição Corporal – MeSH – NCBI (nih.gov); Distribuição de gordura corporal – MeSH – NCBI (nih.gov); Índice de Massa Corporal (Body Mass Index – MeSH – NCBI (nih.gov)); “Excesso de peso” (Excesso de peso – MeSH – NCBI (nih.gov)); Obesidade (Obesidade – MeSH – NCBI (nih.gov)), Densidade óssea – MeSH – NCBI (nih.gov); Fraturas Ósseas – MeSH – NCBI (nih.gov); Sarcopenia – MeSH – NCBI (nih.gov).
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
Reis, M.G., Ferreira, A.J.F., Sohouli, M.H. et al. Effect of cannabis and subproducts on anthropometric measures: a systematic review and meta-analysis. Int J Obes 48, 44–54 (2024). https://doi.org/10.1038/s41366-023-01399-x
Download citation
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41366-023-01399-x
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Advertisement
© 2024 Springer Nature Limited